
Tetrahedron Letters, Vol.22, No.43, pp 4283 - 4286, 1981 Printed in Great Britain

CYCLOADDITION OF HOMOPHTHALIC ANHYDRIDE: A NEW AND SIMPLE ROUTE TO LINEARLY CONDENSED PHENOLIC COMPOUNDS

Y. Tamura,^{*} A. Wada, M. Sasho, and Y. Kita Faculty of Pharmaceutical Sciences, Osaka University 1-6, Yamada-oka, Suita, Osaka, Japan

Summary: Diels-Alder reaction of homophthalic anhydride $(\underline{1})$ with some dienophiles gave a considerable yield of linearly condensed phenolic compounds, directly.

Although homophthalic anhydride $(\underline{1})$ is known to react readily with polar double bonds such as C=O¹ and C=N bonds² and has been used as a useful synthon for the synthesis of some natural products,³ none of the reactions of $\underline{1}$ with C=C and C=C bonds has been reported. We have now found that the anhydride ($\underline{1}$) can react with these bonds, where $\underline{1}$ acts as a diene in the Diels-Alder reaction. The present paper describes a simple and direct route to a linear polynuclear phenolic system, a structural feature present in many antibiotics and other natural products.⁴

When a solution of $\underline{1}$ and alkyl acetylenedicarboxylate ($\underline{2}$ or $\underline{3}$) in toluene was heated at 150° for 1 day, the naphthol ($\underline{4}$ or $\underline{5}$) was obtained in a considerable yield. The regiochemical outcome of this cycloaddition was determined by the reaction of $\underline{1}$ with methyl propiolate ($\underline{6}$). The reaction gave one adduct, 1hydroxy-2-naphthoic acid methyl ester ($\underline{7}$), which was identified with an authentic sample obtained by methylation of 1-hydroxy-2-naphthoic acid. Having established the methodology for effecting the Dields-Alder reaction at 1- and 4-positions of $\underline{1}$, some further examples were examined. As a mode for anthracycline and/or tetracycline type structures, $\underline{1}$ was treated with some naphthoquinones ($\underline{10}$, $\underline{12}$, $\underline{13}$, and $\underline{15}$) in dichlorobenzene to give a considerable yield of tetracyclic compounds ($\underline{11}$, $\underline{14}$, and $\underline{16}$), directly. The results are summarized in the Table.

4283

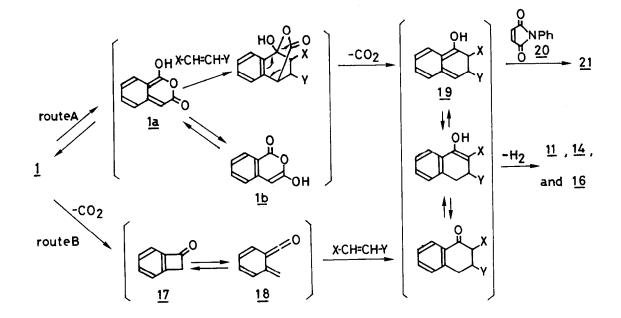

					M.p. (°C)	
Dienophile		Reaction Conditions	Product ^{a)}	Yield ^{b)} (%)	Found ^{C)} (Solvent)	Reported
RO ₂ C-C≡C-C((<u>2</u>); R=Me O2R	in toluene at ^d) 150° for 24 h	OH CO2R R=Me	65	102-103.5 (C ₆ H ₆ -n-hexane)	102-108 ⁵⁾
	(<u>3</u>); R=Et	n	CO ₂ R(<u>5</u>); R=Et	63	54-54.5 (n-hexane)	e ⁶⁾
HC≡C-CO2R	(<u>6</u>); R=Me	u	OH CO ₂ R ⁽⁷⁾ ;	9	74.5-76 (MeOH)	76-77 ⁵⁾
	(<u>8</u>); R=Et	n	(<u>9</u>); R=Et	19	40.5-41 (n-hexane)	48-49 ⁷⁾
	(<u>10</u>)	in dichloro- benzene at 200° for 7 h		44	262-264 (CHC1 ₃)	268-270 ⁸⁾
\bigcup_{0}^{0}	(<u>12</u>)	in dichloro- benzene at 200° for 15 h	(<u>11</u>)	27	262-264 (CHCl ₃)	268-270 ⁸⁾
	(<u>13</u>)	in dichloro- benzene at 200° for 7 h	OH O OH	49	275-278 (CHC1 ₃)	276 ⁹⁾
	(<u>15</u>)	n		38 <u>5</u>)	290-292 (CHCl ₃)	₂₉₄ 10)
	(<u>20</u>)	in dichloro- benzene at 200° for 20 h	HO NPh OO NPh O (21) f	48 (,g)	232-234 (CHCl ₃ -n-hexane)	

Table Diels-Alder Reactions of 1 with Some Dienophiles

a) All spectroscopic data (N.M.R., IR., U.V., and mass spectra) are in good agreement with the proposed structures.

- b) Isolated yields were based on 1.
- The melting points are not corrected. c)
- d)
- e) f)
- The metring points are not corrected. The reaction was carried out in a sealed tube. The boiling point was reported; b.p. $163-164^{\circ}C/0.05$ mmHg. Although a single isomer was formed, the stereochemistry could not be confirmed yet. Satisfactory elemental and spectral data were obtained; [ν_{max} (CHCl₃); 1770, 1715, 1705, and 1640 cm⁻¹; δ (CDCl₃); 7.9-6.8 (14H, m, Ar-H), 4.37 (1H, t, J 9 Hz, CH), 3.8-3.3 (3H, m, 2×CH and OH), 3.15 (1H, d, J 9 Hz, CH), and 3.09 (1H, d, J 9 Hz, CH); m/e 464 (M⁺)]. g)

There are two possible routes for the formation of the linearly condensed adduct from <u>1</u>, i.e. Diels-Alder reaction of the dienol isomer (<u>1a</u>) rather than another possible tautomer (<u>1b</u>) with dienophile followed by spontaneous extrusion of CO₂ (route A) or Diels-Alder reaction of *ortho*-xylylene intermediate (<u>18</u>)¹¹) generated from benzocyclobutenone (<u>17</u>)¹²) with dienophile (route B) as shown in the Scheme. Although definite evidence could not be obtained, the following results strongly support route A for the formation of the adduct; i) prolong heating of <u>1</u> in dichlorobenzene did not give <u>17</u> or its derivative at all and <u>1</u> was recovered unchanged and ii) 1:2-adduct (<u>21</u>) was obtained by the thermal reaction of <u>1</u> with N-Phenylmaleinimide (<u>20</u>) probably through the enol intermediate (19).

REFERENCES AND NOTES

- M.A. Haimova, N.M. Mollov, S.C. Ivanova, A.I. Dimitrova, and V.I. Ognyanov, *Tetrahedron*, <u>33</u>, 331 (1977) and references cited therein.
- 2) M.A. Haimova, V.I. Ognyanov, and N.M. Mollov, Synthesis, 1980, 845.
- M. Cushman, J. Gentry, and F.W. Dekow, J. Org. Chem., <u>42</u>, 1111 (1977);
 M. Cushman and F.W. Dekow, Tetrahedron, <u>34</u>, 1435 (1978); idem, J. Org. Chem., <u>44</u>, 407 (1979); S.O. de Silva, I. Ahmad, and V. Snieckus, Can. J. Chem., 57, 1598

(1979); M. Cushman, T.C. Choong, J.T. Valko, and M.P. Koleck, J., J. Org. Chem., 45, 5067 (1980); K. Iwasa, Y.P. Gupta, and M. Cushman, Tetrahedron Lett., 22, 2333 (1981).

- 4) The aglycone portion of numerous naturally occurring quinones consists of linear polynuclear phenolic systems: R.H. Thompson, "Naturally Occurring Quinones", Academic Press, New York, N.Y., 1971.
- 5) N.J. Broom and P.G. Sammes, J. Chem. Soc. Perkin I, 1981, 465.
- 6) Z. Horii, T. Katagi, Y. Tamura, and T. Tanaka, Chem. Pharm. Bull., <u>10</u>, 887 (1962).
- 7) F.M. Hauser and S.A. Pogang, J. Het. Chem., 15, 1535 (1978).
- D.H. Barton, J.H. Bateson, S.C. Datta, and P.D. Magnus, J. Chem. Soc. Perkin I, 1976, 503.
- 9) H. Brockmann, R. Zunker, and H. Brockmann. Jr., Ann., 696, 145 (1966).
- 10) H. Brockmann and W. Müller, Chem. Ber., 92, 1164 (1959).
- 11) ortho-Xylylenes have been involved in the construction of the ring skelton of some anthracyclinones: B.J. Arnold, P.G. Sammes, and T.W. Wallace, J. Chem. Soc. Chem. Commun., <u>1972</u>, 30; T. Kametani, M. Takeshita, H. Nemoto, and K. Fukumoto, Chem. Pharm. Bull., <u>26</u>, 556 (1978); J.R. Wiseman, N.I. French, R.K. Hallmark, and K.G. Chiong, Tetrahedron Lett., <u>1978</u>, 3765; R.K. Boeckman, Jr., M.H. Delton, T.M. Dolak, T. Watanabe, and F. Farina, Tetrahedron Lett., <u>1979</u>, 3983; T. Laduanty, L. Lapage, and Y. Lapage, Can. J. Chem., <u>58</u>, 1161 (1980); R.L. Funk and K.P.C. Volhardt, Chem. Soc. Reviews, <u>9</u>, 41 (1980) and references cited therein.
- 12) Flash thermolysis of <u>1</u> at high temperature (over 500°) in a stream of nitrogen is known to give the benzocyclobutenone (<u>17</u>) together with fulveneallene: R.L. Spangler and J.H. Kim, *Tetrahedron Lett.*, <u>1972</u>, 1249. Similar thermal decomposition of 3-isochromanones into benzocyclobutenes has also been reported by the same group: R.J. Spangler, B.G. Beckmann, and J.H. Kim, J. Org. Chem., <u>42</u>, 2989 (1977); R.J. Spangler and B.G. Beckmann, *Tetrahedron Lett.*, <u>1976</u>, 2517.

(Received in Japan 11 July 1981)